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U N C L A S S I F I E D 

ICF Rad-Hydro Simulations Can Be Improved by Self-
Consistently Including Plasma Transport Effects 

n  Although plasma kinetic effects may be fundamentally important for 
certain ICF implosions, some missing plasma effects may be accounted 
for through fluid models 

n  Such effects include 
•  Differential motion and heating of various ion species 

—  Capsule’s fuel composition modifications 
—  Mix at interfaces 
—  Artificial stagnation features in hohlraums 

•  Large physical plasma viscosity 
—  Reduced capsule compression 
—  Suppression of high-order modes 

•  Multi-ion effects on electron heat transport 
—  Reduced heat conductivity ~ 1/Zeff 

•  … 

Slide 2 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Accounting for Ion Inter-Penetration Can Help Eliminate 
Artificial Stagnation Features in Hohlraums 
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HYDRA predicts artificial 
stagnation features formed as 
ablated capsule and hohlraum 

plasmas interact 

Inside the features, electron 
density exceeds ncritical/4, 

preventing laser from propagating 
further  

Stagnation feature 

Laser energy deposition on the 
hohlraum wall is modeled 

incorrectly, resulting in poorly 
predicted implosion shape 
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U N C L A S S I F I E D 

Physical Ion Viscosity Can Reduce Fuel Compression, 
Suppress High-Order Modes 
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Yabe et al., Las. Part. Beams 7, 259 (1989); 

also Mason et al., PoP 21, 022705 (2014); 

also Vold et al., PoP 22, 112708 (2015) 

Weber et al., PRE 89, 053106 (2014); 

also Haines et al., PoP 21, 092306 (2014) 
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U N C L A S S I F I E D 

Hydrodynamic Plasma Descriptions Have Long History 
n  The best known for single ion plasmas is due to Braginskii (1957) 

•  Used the Chapman-Enskog approach  

n  Zhdanov used Grad’s 21-moment method for multiple ion plasmas (1980s)  
•  Extremely difficult to understand due to cumbersome notation 

n  Albright and Daughton, Zimmerman obtained semi-phenomenological 
descriptions of unmagnetized multiple ion plasmas 

n  Amendt et al., Kagan et al. studied diffusive ion fluxes in binary mixtures 

n  Simakov, Molvig, and Vold recently obtained a rigorous description of 
unmagnetized plasmas with arbitrary number of arbitrary ion species 
•  Employed the Chapman-Enskog approach and asymptotic expansion in Kn<<1 
•  Electron and ion treatments decouple due to me/mi<<1 
•  Allow Te≠Ti; ions have same temps. Ti=T but slightly different flows ui=u+Vi, |Vi|<<u  
•  Results reduce to those of Braginskii for single ion species plasmas 
•  Should be straightforward to implement in codes 
•  Refs.: PoP 21, 024503 and 092709 (2014); ibid. 23, 032115 and 032116 (2016) 
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U N C L A S S I F I E D 

Plasma Evolution is Described by Conservation 
Equations to O(Kn2) 

n  Total mass, momentum, and energy conservation equations are 

n  To close need electron and ion heat fluxes, viscosities, drift velocities, 
and equation for electron pressure 

n  Keep electron viscosity in high-Z plasmas:  

n  Here, concentrate on ions 
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U N C L A S S I F I E D 

Ion Diffusion Velocities Vi, Heat Flux q, and Viscous 
Stress Tensor π Are Given to O(Kn) by 

 

 

n  Require generalized diffusion coeffs. Δij’, thermo-diffusion (Soret) 
coeffs. DTi, Dufour coeffs. DTj’, and heat conduction coeff. κ 

n  Viscosity is                                                                              , require 
viscosity coeff. η 
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U N C L A S S I F I E D 

To Evaluate Ion Transport Coeffs. Require O(Kn) 
Correction fi

1 to Ion Maxwellian Distribution Functions  
n  The corrections are solutions of Spitzer problems Ci(fi

1)=known, i=1,…,N 
with Ci linearized collision operator for species i with all ion species 

n  Can expand fi
1 in polynomials, find expansion coeffs. variationally 

•  The variational functionals are maximized by the Spitzer solutions, with maximum 
values equal to entropy production sources  

•  Plasma transport coeffs. are known functions of expansion coeffs. and possess 
quadratic accuracy compared with trial functions 

•  Expansion coeffs. 
—  are obtained by solving linear systems of 3N equations (for drift velocities and heat flux) or 

2N equations (for viscosity) 
—  depend on pair-wise ratios of ion masses                , charges                        , and number 

densities  

n  Can solve linear systems numerically for any N; solved analytically for 
•  Single ion plasma èrecover Braginskii 
•  Two ion plasmas: (i) D+T, (ii) ions with disparate masses 
•  Three ion plasma: D+T+gold    
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U N C L A S S I F I E D 

Example: Heat Conduction and Viscosity Coeffs. for 
Deuterium + Tritium Plasma 

n  Introduce dimensionless coefficients 

n  By going from pure D to pure T plasma, heat conduction is suppressed 
by            , while viscosity increases by                  
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U N C L A S S I F I E D 

Example: Heat Conduction and Viscosity Coeffs. for 
Deuterium + Gold Plasma 

n  By going from pure D to pure Au, ion heat conduction and viscosity get 

suppressed by                           and                           , respectively   
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U N C L A S S I F I E D 

Conclusions 

n  We obtained accurate hydrodynamic description of unmagnetized 
plasma with arbitrary number of arbitrary ion species by carrying out 
rigorous asymptotic expansion in Kn<<1 

n  Plasma transport coefficients depend on pair-wise ratios of ion masses, 
charges, and number densities and can generally be obtained by 
numerically solving small linear systems 

n  We obtained analytical expressions for the transport coefficients for 
several important cases 

n  The method recovers the Braginskii results for single ion plasma 

n  The hydrodynamic description accounts for several important plasma 
effects typically neglected in standard ICF simulations  
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